

Security Audit Report
XLink - Endpoints Update

March 2025

V202411

https://www.coinfabrik.com

 Security Audit Report: Endpoints Update - XLink

Executive Summary 3
Scope 3
Findings 3

Critical Severity Issues 4
CR-01 Unvalidated Trait Called in finalize-peg-in-agg 4

High Severity Issues 5
Medium Severity Issues 5

ME-01 Improper Refund Handling in finalize-peg-in-agg 5
ME-02 Incorrect Recipient of aBTC Fee 6
ME-03 Reverted Peg-in due to Insufficient Balance in finalize-peg-in-agg 7

Low Severity Issues 7
Other Considerations 7

Centralization 8
Upgrades 8

About CoinFabrik 8
Methodology 8
Severity Classification 9
Issue Status 10
Disclaimer 11
Changelog 11

Page 2 of 11

 Security Audit Report: Endpoints Update - XLink

Executive Summary

CoinFabrik was asked to audit the contracts for XLink’s Endpoints Update.

During this audit we found one critical issue and three medium issues.

All the issues were resolved.

Scope

The audited files are from the git repository located at https://github.com/xlink-network/xlink, in

the ./packages/contracts/bridge-stacks/contracts/ directory. The audit is based on the

commit 365709a9c5d7388d76f09cc63776b385fcc9af20. Fixes checked on

5f6cd61dd126836195898c42f1345b7d78668f44.

The scope for this audit includes and is limited to the following files:

● ./btc-peg-in-v2-07e-agg.clar: Processes aggregated peg-in transactions from Bitcoin

to Stacks, minting tokens and enabling swaps based on validated Bitcoin transaction

data..

● ./cross-peg-out-v2-01b-agg.clar: Facilitates aggregated peg-out operations from

Stacks to other blockchains, handling token burns or transfers to release funds across

chains.

● ./meta-peg-in-v2-06e-agg.clar: Manages BRC-20/Runes peg-in operations from

Bitcoin to Stacks.

Fixes were implemented in the following files:

● ./btc-peg-in-v2-07e-agg.clar

● ./meta-peg-in-v2-06h-agg.clar

No other files in this repository were audited. Its dependencies are assumed to work according

to their documentation. Also, no tests were reviewed for this audit.

Findings

In the following table we summarize the security issues we found in this audit. The severity

classification criteria and the status meaning are explained below. This table does not include

the enhancements we suggest to implement, which are described in a specific section after the

security issues.

Page 3 of 11

https://github.com/xlink-network/xlink

 Security Audit Report: Endpoints Update - XLink

Each severity label is detailed in the Severity Classification section. Additionally, the statuses are

explained in the Issues Status section.

Id Title Severity Status

CR-01
Unvalidated Trait Called in
finalize-peg-in-agg

❚ Critical Resolved

ME-01
Improper Refund Handling in
finalize-peg-in-agg

❚ Medium Resolved

ME-02 Incorrect Recipient of aBTC Fee ❚ Medium Resolved

ME-03
Reverted Peg-in due to Insufficient Balance
in finalize-peg-in-agg

❚ Medium Resolved

Critical Severity Issues

CR-01 Unvalidated Trait Called in finalize-peg-in-agg

Location
● ./meta-peg-in-v2-06e-agg.clar:154-156

Classification
● CWE-20: Improper Input Validation 1

Description

In the finalize-peg-in-agg function, the contract calls token-in-trait to mint tokens before

performing validation via validate-tx-agg-extra. Specifically, the mint-fixed method of

token-in-trait is invoked to mint an amount (amt-net) to the tx-sender. This occurs prior to

any checks that ensure token-in-trait corresponds to a legitimate, whitelisted token contract.

Even though subsequent validation in validate-tx-agg-extra checks the token-in address

from order-details, the error from this validation is handled by a match statement, allowing the

transaction to proceed to an error branch (e.g., refund) rather than reverting. As a result, a

malicious token-in-trait can execute arbitrary code during the minting step, regardless of

whether validation fails.

In order to exploit these, there are some checks the trait should bypass:

1https://cwe.mitre.org/data/definitions/20.html

Page 4 of 11

https://cwe.mitre.org/data/definitions/20.html

 Security Audit Report: Endpoints Update - XLink

● Line 150 check-trait where token-in-trait must be equal to

order-details::token-in

● Based on the previous checks, there are the checks order-details::token-in should

bypass to exploit this issue:

○ Line 317 check-token where order-details::swap-token-in and

order-details::swap-token-in must be equal or one must be an approved

wrapper of the other. Since

cross-router-v2-03::get-approved-wrapped-or-fail checks against a

whitelist, the exploit can only work passing through the first check.

Recommendation

Explicitly validate token-in-trait against validation-data::pair-details::token before

calling it.

Status

Resolved. In the new version of the contract (meta-peg-in-v2-06h-agg), this is validated in line

150.

High Severity Issues

No issues found.

Medium Severity Issues

ME-01 Improper Refund Handling in finalize-peg-in-agg

Location
● ./btc-peg-in-v2-07e-agg.clar:154-156

Description

In the finalize-peg-in-agg function, the refund flow is initiated when an error is thrown by

cross-peg-out-v2-01b-agg::validate-transfer-to-swap. The intended behavior is to refund

the full amount, consisting of amount-net + fee, to the user. However, prior to the validation

check, at line 136, the fee is transferred to the fee-to-address. In the event of a refund, this fee

is not returned to the contract. As a result, the contract may lack sufficient funds to execute the

Page 5 of 11

 Security Audit Report: Endpoints Update - XLink

refund of the total amount (amount-net + fee), leading to potential operational failures because

of the transaction reverting.

The current flow can be summarized as follows:

1. The contract mints amount-net + fee to its own balance.

2. The fee is then transferred from the contract to fee-to-address.

3. If validation fails, the refund attempts to return amount-net + fee, but the fee is no

longer available within the contract, having been sent to fee-to-address.

Recommendation

Instead of transferring the fee to fee-to-address before validation, move this transfer into the

success branch of the validation check.

Status

Resolved. In the new version of the contract (btc-peg-in-v2-07g-agg), fee transfer was moved

into the success branch.

ME-02 Incorrect Recipient of aBTC Fee

Location
● ./meta-peg-in-v2-06e-agg.clar:149

Description

In the finalize-peg-in-agg function, the aBTC fee associated with a peg-in order is not

transferred to fee-to-address as intended and as implemented in

btc-peg-in-v2-07e-agg.clar. Instead, the fee is minted to the contract itself. This deviates

from the expected behavior, where the fee should be directed to a designated fee-to-address

for proper accounting and distribution. As a result, aBTC accumulates within the

meta-peg-in-v2-06e-agg.clar contract, leading to an untracked buildup of funds that are not

assigned to their intended recipient.

Recommendation

Modify the function to transfer the aBTC fee to the fee-to-address after minting.

Page 6 of 11

 Security Audit Report: Endpoints Update - XLink

Status

Resolved. In the new version of the contract (meta-peg-in-v2-06h-agg), fee is transferred to the

fee address.

ME-03 Reverted Peg-in due to Insufficient Balance in

finalize-peg-in-agg

Location
● ./meta-peg-in-v2-06e-agg.clar:154

Description

In the finalize-peg-in-agg function, the meta-peg-out-endpoint-v2-04 contract provides

funds for executing non-burnable peg-in orders. However, at line 154, the subtraction operation

assumes that the contract’s balance is always sufficient to cover amt-net without performing a

sanity check. If amt-net exceeds the contract’s available balance, this operation results in an

arithmetic underflow, triggering a Clarity runtime error and causing the transaction to fail

without a proper code error.

Recommendation

Implement a sanity check to ensure that the meta-peg-out-endpoint-v2-04 contract’s balance

is sufficient to fulfill the peg-in order before performing the subtraction.

Status

Resolved. In the new version of the contract (meta-peg-in-v2-06h-agg), assertion was added to

check peg-out endpoint balance.

Low Severity Issues

No issues found.

Other Considerations

The considerations stated in this section are not right or wrong. We do not suggest any action to

fix them. But we consider that they may be of interest to other stakeholders of the project,

including users of the audited contracts, token holders or project investors.

Page 7 of 11

 Security Audit Report: Endpoints Update - XLink

Centralization

There is a dependence on the DAO governance mechanism and the centralized registry for token

whitelisting, concentrating authority over critical operations like pauses and approvals in a single

entity or group.

Upgrades

The contracts do not implement upgradeability patterns.

About CoinFabrik
CoinFabrik is a research and development company specialized in Web3, with a strong

background in cybersecurity. Founded in 2014, we have worked on over 500 decentralization

projects, including EVM-based and other platforms like Solana, Algorand, and Polkadot. Beyond

development, we offer security audits through a dedicated in-house team of senior cybersecurity

professionals, working on code in languages such as Substrate, Solidity, Clarity, Rust, TEAL, and

Stellar Soroban.

Our team has an academic background in computer science, software engineering, and

mathematics, with accomplishments including academic publications, patents turned into

products, and conference presentations. We actively research in collaboration with universities

worldwide, such as Cornell, UCLA, and École Polytechnique in Paris, and maintain an ongoing

collaboration on knowledge transfer and open-source projects with the University of Buenos

Aires, Argentina. Our management and people experience team has extensive expertise in the

field.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the

expected behavior, and general documentation about the project. Our auditors spent two weeks

auditing the source code provided, which includes understanding the context of use, analyzing

the boundaries of the expected behavior of each contract and function, understanding the

implementation by the development team (including dependencies beyond the scope to be

audited) and identifying possible situations in which the code allows the caller to reach a state

that exposes some vulnerability. Without being limited to them, the audit process included the

following analyses.

● Arithmetic errors

Page 8 of 11

https://www.coinfabrik.com

 Security Audit Report: Endpoints Update - XLink

● Race conditions

● Misuse of block timestamps

● Denial of service attacks

● Excessive runtime usage

● Missing or misused function qualifiers

● Needlessly complex code and contract interactions

● Poor or nonexistent error handling

● Insufficient validation of the input parameters

● Incorrect handling of cryptographic signatures

● Centralization and upgradeability

After delivering a report with our findings, the development team had the opportunity to

comment on every finding and fix the issues they considered convenient. Once fixed and/or

commented, our team ran a second review process to verify that the changes to the code

effectively solve the issues found and do not unintentionally add new ones. This report includes

the final status after the second review.

Severity Classification
Security risks are classified as follows : 2

2 This classification is based on the smart contract Immunefi severity classification system
version 2.3. https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

Page 9 of 11

❚ Critical

● Manipulation of governance voting result deviating from voted
outcome and resulting in a direct change from intended effect of
original results

● Direct theft of any user funds, whether at-rest or in-motion, other than
unclaimed yield

● Direct theft of any user NFTs, whether at-rest or in-motion, other than
unclaimed royalties

● Permanent freezing of funds

● Permanent freezing of NFTs

● Unauthorized minting of NFTs

● Predictable or manipulable RNG that results in abuse of the principal
or NFT

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

 Security Audit Report: Endpoints Update - XLink

Issue Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially Resolved: Adjusted program implementation to eliminate part of the risk. The

other part remains in the code, but is a result of an intentional decision.

Page 10 of 11

● Unintended alteration of what the NFT represents (e.g. token URI,
payload, artistic content)

● Protocol insolvency

❚ High

● Theft of unclaimed yield

● Theft of unclaimed royalties

● Permanent freezing of unclaimed yield

● Permanent freezing of unclaimed royalties

● Temporary freezing of funds

● Temporary freezing NFTs

❚ Medium

● Smart contract unable to operate due to lack of token funds

● Block stuffing

● Griefing (e.g. no profit motive for an attacker, but damage to the users
or the protocol)

● Theft of gas

● Unbounded gas consumption

● Security best practices not followed

❚ Low
● Contract fails to deliver promised returns, but doesn't lose value

● Other security issues with minor impact

 Security Audit Report: Endpoints Update - XLink

● Acknowledged: The issue remains in the code, but is a result of an intentional decision.

The reported risk is accepted by the development team.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Disclaimer
This audit report has been conducted on a best-effort basis within a tight deadline defined

by time and budget constraints. We reviewed only the specific smart contract code provided

by the client at the time of the audit, detailed in the Scope section. We do not review other

components that are part of the solution: neither implementation, nor general design, nor

business ideas that motivate them.

While we have employed the latest tools, techniques, and methodologies to identify potential

vulnerabilities, this report does not guarantee the absolute security of the contracts, as

undiscovered vulnerabilities may still exist. Our findings and recommendations are

suggestions to enhance security and functionality and are not obligations for the client to

implement.

The results of this audit are valid solely for the code and configurations reviewed, and any

modifications made after the audit are outside the scope of our responsibility. CoinFabrik

disclaims all liability for any damages, losses, or legal consequences resulting from the use or

misuse of the smart contracts, including those arising from undiscovered vulnerabilities or

changes made to the codebase after the audit.

This report is intended exclusively for the XLink team and should not be relied upon by any third

party without the explicit consent of CoinFabrik. Blockchain technology and smart contracts are

inherently experimental and involve significant risk; users and investors should fully understand

these risks before deploying or interacting with the audited contracts.

Changelog

Date Description

2025-03-31 Initial report based on commit 365709a9c5d7388d76f09cc63776b385fcc9af20.

2025-04-01 Final report based on commit 5f6cd61dd126836195898c42f1345b7d78668f44.

Page 11 of 11

	
	Security Audit Report
	
	Executive Summary
	Scope
	Findings
	Critical Severity Issues
	CR-01 Unvalidated Trait Called in finalize-peg-in-agg
	Location
	Classification
	Description
	Recommendation
	Status

	High Severity Issues
	Medium Severity Issues
	ME-01 Improper Refund Handling in finalize-peg-in-agg
	Location
	Description
	Recommendation
	Status

	ME-02 Incorrect Recipient of aBTC Fee
	Location
	Description
	Recommendation
	Status

	ME-03 Reverted Peg-in due to Insufficient Balance in finalize-peg-in-agg
	Location
	Description
	Recommendation
	Status

	Low Severity Issues

	Other Considerations
	Centralization
	Upgrades

	About CoinFabrik
	Methodology
	Severity Classification
	Issue Status
	Disclaimer
	Changelog

